2 research outputs found

    Fluctuations of quantum fields via zeta function regularization

    Get PDF
    Explicit expressions for the expectation values and the variances of some observables, which are bilinear quantities in the quantum fields on a D-dimensional manifold, are derived making use of zeta function regularization. It is found that the variance, related to the second functional variation of the effective action, requires a further regularization and that the relative regularized variance turns out to be 2/N, where N is the number of the fields, thus being independent on the dimension D. Some illustrating examples are worked through.Comment: 15 pages, latex, typographical mistakes correcte

    Quantum Scalar Field on the Massless (2+1)-Dimensional Black Hole Background

    Get PDF
    The behavior of a quantum scalar field is studied in the metric ground state of the (2+1)-dimensional black hole of Ba\~nados, Teitelboim and Zanelli which contains a naked singularity. The one-loop BTZ partition function and the associate black hole effective entropy, the expectation value of the quantum fluctuation as well as the renormalized expectation value of the stress tensor are explicitly computed in the framework of the ζ\zeta-function procedure. This is done for all values of the coupling with the curvature, the mass of the field and the temperature of the quantum state. In the massless conformally coupled case, the found stress tensor is used for determining the quantum back reaction on the metric due to the scalar field in the quantum vacuum state, by solving the semiclassical Einstein equations. It is finally argued that, within the framework of the 1/N expansion, the Cosmic Censorship Hypothesis is implemented since the naked singularity of the ground state metric is shielded by an event horizon created by the back reaction.Comment: 18 pages, RevTeX, no figures, minor changes, final version accepted for publication in Phys. Rev.
    corecore